LatihanSoal Tentukan penyelesaian dari tiap persamaan trigonometri berikut ini. 1. sin 3x˚ = , 0≤x≤360˚ 2. cos 2x˚ = , 0≤x≤360˚ Latihan Soal Carilah himpunan penyelesaian dari setiap persamaan trigonometri berikut ini dalam interval yang diberikan: a. cos 8x˚ + cos 2x˚ = 0, 0≤x≤180˚ b. sin (x˚+75˚) + sin (x˚-15
Himpunanpenyelesaian dari $ 2\cos ^2 x < 3\sin x + 3 \, $ pada interval $ 0 \leq x \leq 2\pi \, $ adalah ? Penyelesaian : artinya ada tak hingga banyaknya penyelesaian. Coba saja baca materi persamaan trigonometri. akar-akar yang kita ambil dari $ \sin x = \frac{1}{2} \, $ adalah akar-akar sekitar daerah $ 0^\circ \, $ sampai $ 360
Himpunanpenyelesaian dari persamaan di atas adalah {1 6 𝜋,2 3 𝜋} Contoh 2: Tentukan akar-akar dari persamaan trigonometri berikut kemudian tuliskan himpunan penyelesaiannya. 1. 2cos𝑥−√3=0,0°≤𝑥≤360° 2. sin(𝑥−30°)=1 2 √3,0°≤𝑥≤360° 3. √3sin𝑥=cos𝑥,0°≤𝑥≤360° Alternatif Penyelesaian: 1.
Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu.
Contoh soal dan pembahasan menyelesaikan persamaan trigonometri, menentukan himpunan penyelesaian materi matematika kelas 10, 11 SMA. Tengok dulu 3 kelompok rumus penyelesaian persamaan trigonometri berikut. Masing-masing untuk sinus, cosinus dan untuk tangen Rumus Penyelesaian Persamaan Trigonometri Untuk sinus Untuk kosinus Untuk tangen k diisi nilai 0, 1, 2, 3 dan seterusnya. Contoh Soal No. 1 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari sin x = 1/2 Pembahasan Dari sin x = 1/2 Untuk harga awal, sudut yang nilai sin nya 1/2 adalah 30°. Sehingga sin x = 1/2 sin x = sin 30° Dengan pola rumus yang pertama di atas i x = 30 + k ⋅ 360 k = 0 → x = 30 + 0 = 30 ° k = 1 → x = 30 + 360 = 390 ° ii x = 180 − 30 + k⋅360 x = 120 + k⋅360 x = 150 + k⋅360 k = 0 → x = 150 + 0 = 150 ° k = 1 → x = 150 + 360 = 510 ° Dari penggabungan hasil i dan hasil ii, dengan batas permintaan 0° ≤ x ≤ 360°, yang diambil sebagai himpunan penyelesaiannya adalah HP = {30°, 150°} Soal No. 2 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x = 1/2 Pembahasan 1/2 adalah nilai cosinus dari 60°. Sehingga cos x = cos 60° i x = 60° + k ⋅ 360° k = 0 → x = 60 + 0 = 60 ° k = 1 → x = 60 + 360 = 420° ii x = −60° + k⋅360 x = −60 + k⋅360 k = 0 → x = −60 + 0 = −60° k = 1 → x = −60 + 360° = 300° Himpunan penyelesaian yang diambil adalah HP = {60°, 300°} Soal No. 3 Untuk 0° ≤ x ≤ 720° tentukan himpunan penyelesaian dari sin x − 30 = 1/2 √3 Pembahasan 1/2 √3 miliknya sin 60° Sehingga sin x − 30 = sin 60° dan Untuk 0° ≤ x ≤ 720°, HP = {90°, 150°, 450°, 510°} Soal No. 4 Untuk 0° ≤ x ≤ 360° tentukan himpunan penyelesaian dari cos x − 30° = 1/2 √2 Pembahasan Harga awal untuk 1/2 √2 adalah 45° HP = {75°, 345°} Soal No. 5 Himpunan penyelesaian persamaan cos 2x + sin x = 0 untuk 0 < x ≤ 2π adalah….. A. {π/2, 4π/3, 5π/3} B. {π/2, 7π/6, 4π/3} C. {π/2, 7π/6, 5π/3} D. {π/2, 7π/6, 11π/6} E. {π/2, 5π/3, 11π/6} Pembahasan Dari rumus sudut rangkap dari pelajaran sebelumnya cos 2x = cos2 x − sin2x cos 2x = 2 cos2 x − 1 cos 2x = 1 − 2 sin2 x cos 2x + sin x = 0 1 − 2 sin2 x + sin x = 0 − 2 sin2 x + sin x + 1 = 0 2 sin2 x − sin x − 1 = 0 Faktorkan 2sin x + 1sin x − 1 = 0 2sin x + 1 = 0 2sin x = −1 sin x = −1/2 x = 210° dan x = 330° atau sin x − 1 = 0 sin x = 1 x = 90° Sehingga HP = {90°, 210°, 330°} dalam satuan derajat. HP = {π/2, 7π/6, 11π/6} dalam satuan radian. Jawaban D. Soal No. 6 Himpunan penyelesaian persamaan cos 2x + 5 sin x + 2 = 0 untuk 0 ≤ x ≤ 2π adalah… A. {2π/3,4π/3} B. {4π/3, 5π/3} C. {5π/6, 7π/6} D. {5π/6, 11π/6} E. {7π/6, 11π/6} Pembahasan Persamaan trigonometri Misalkan sin x sebagai P dan juga cos 2x = 1 − 2sin2 x Soal No. 7 Himpunan penyelesaian persamaan 2cos 2x − 3 cos x + 1 = 0 untuk 0 < x < 2π adalah… A. {π/6, 5π/6} B. {π/6, 11π/6} C. {π/3, 2π/3} D. {π/3, 5π/3} E. {2π/3, 4π/3} Pembahasan 2cos 2x − 3 cos x + 1 = 0 Faktorkan 2cos x − 1cos x − 1 = 0 2cos x − 1 = 0 2cos x = 1 cos x = 1/2 x = 60° = π/3 dan x = 300° = 5π/3 atau cos x − 1 = 0 cos x = 1 x = 0° dan x = 360° = 2π Tidak diambil, karena diminta 0 < x < 2π Jadi HP = {π/3, 5π/3} Jawaban D Soal No. 8 Himpunan penyelesaian dari persamaan cos 4x + 3 sin 2x = −1 untuk 0° ≤ x ≤ 180° adalah… A. {150°,165°} B. {120°,150°} C. {105°,165°} D. {30°,165°} E. 15°,105° Pembahasan Ubah ke bentuk sin semua, dengan rumus sudut rangkap, kemudian faktorkan cos 4x + 3 sin 2x = −1 Untuk faktor Tidak Memenuhi, lanjut ke faktor Diperoleh Jadi HP = {105°,165°} Soal No. 9 Himpunan penyelesaian dari 2 sin2 x − 3 sin x + 1 = 0 dengan 0° ≤ x ≤ 360° adalah…. A. {30°, 90°, 150°} B. {30°, 120°, 240°} C. {30°, 120°, 300°} D. {30°, 150°, 270°} E. {60°, 120°, 270°} UN Matematika SMA IPA 2014 Pembahasan Soal ini akan coba diselesaikan dengan cara coba-coba. Ambil salah satu sudut dari pilihan jawaban yang ada, untuk mengeliminir pilihan lainnya. Dari yang mudah yaitu 30° atau 90°. Nilai sin 30° adalah 1/2, jika sudut ini termasuk jawaban maka akan sama dengan nol seperti permintaan soal. Persamaan di soal 2 sin2 x − 3 sin x + 1 = ? 30° → 2 sin2 30° − 3 sin 30° + 1 = ? = 2 1/22 − 3 1/2 + 1 = 0 Benar, jadi jawaban harus memuat angka 30°, pilihan E salah karena tidak memuat 30 derajad. Berikutnya coba 90°, tentunya sudah tahu sin 90° = 1 2 sin2 x − 3 sin x + 1 = ? 90° → 2 sin2 90° − 3 sin 90° + 1 = ? = 2 12 − 3 1 + 1 = 2 − 3 + 1 = 0 Benar, Jawaban harus memuat 90° jadi B, C, D, dan E salah, A dipastikan benar tanpa dilakukan pengecekan pada 150°, tentunya kalau soalnya ndak error Soal No. 10 Himpunan penyelesaian persamaan cos 2x − 2 sin x = 1; 0 ≤ x < 2π adalah…. A. {0, π, 3π/2, 2π} B. {0, π, 4π/3, 2π} C. {0, 2π/3; π, 2π} D. {0, π, 2π} E. {0, π, 3π/2} Pembahasan Soal ini lebih mudah lagi, syaratnya adalah 0 ≤ x < 2π , maka x tidak boleh memuat 2π, karena tandanya adalah lebih kecil dari 2π bukan lebih kecil atau sama dengan. Jadi pilihan yang ada 2π nya salah, hanya E yang tidak memuat 2π. Jadi jawabnya yang E, soal di atas dari soal UN, namun soal seperti ini jarang-jarang ada.
Jawabanhimpunan penyelesaian dari persamaan trigonometri tersebut adalah { 18 1 ​ π , 18 5 ​ π , 18 13 ​ π , 18 17 ​ π , 18 25 ​ π , 18 29 ​ π }himpunan penyelesaian dari persamaan trigonometri tersebut adalah PembahasanJawaban yang benar untuk pertanyaan tersebut adalah { 18 1 ​ π , 18 5 ​ π , 18 13 ​ π , 18 17 ​ π , 18 25 ​ π , 18 29 ​ π } Jika sin x = sin α , maka x = α + k ⋅ 2 π atau x = π − α + k ⋅ 2 π Diketahui sin 3 x = 2 1 ​ , 0 ≤ x ≤ 2 π sehingga sin 3 x = sin 6 π ​ 1. Diperoleh 3 x x ​ = = ​ 6 π ​ + k ⋅ 2 π 18 π ​ + k ⋅ 3 2 ​ π ​ Untuk k ​ = ​ 0 ⇒ x = 18 π ​ + 0 ⋅ 3 2 ​ π = 18 π ​ ​ Untuk k ​ = ​ 1 ⇒ x = 18 π ​ + 1 ⋅ 3 2 ​ π = 18 13 ​ π ​ Untuk k ​ = ​ 2 ⇒ x = 18 π ​ + 2 ⋅ 3 2 ​ π = 18 25 ​ π ​ 2. Diperoleh 3 x 3 x x ​ = = = ​ π − 6 π ​ + k ⋅ 2 π 6 5 ​ π + k ⋅ 2 π 18 5 ​ π + k ⋅ 3 2 ​ π ​ Untuk k ​ = ​ 0 ⇒ x = 18 5 ​ π + 0 ⋅ 3 2 ​ π = 18 5 ​ π ​ Untuk k ​ = ​ 1 ⇒ x = 18 5 ​ π + 1 ⋅ 3 2 ​ π = 18 17 ​ π ​ Untuk k ​ = ​ 2 ⇒ x = 18 5 ​ π + 2 ⋅ 3 2 ​ π = 18 29 ​ π ​ Dengan demikian, himpunan penyelesaian dari persamaan trigonometri tersebut adalah { 18 1 ​ π , 18 5 ​ π , 18 13 ​ π , 18 17 ​ π , 18 25 ​ π , 18 29 ​ π }Jawaban yang benar untuk pertanyaan tersebut adalah Jika , maka atau Diketahui sehingga 1. Diperoleh Untuk Untuk Untuk 2. Diperoleh Untuk Untuk Untuk Dengan demikian, himpunan penyelesaian dari persamaan trigonometri tersebut adalah
himpunan penyelesaian dari persamaan trigonometri